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1 Introduction

Lepton mixing and non-zero neutrino masses are now established facts — for reviews and

for the latest fits see [1]. The mixing angles in the lepton mixing matrix U have values

quite different from those of quark mixing. The phenomenological hypothesis that

U = UHPS ≡









2/
√

6 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2









(1.1)

has been put forward by Harrison, Perkins and Scott (HPS) in 2002 [2]. At present, all the

experimental data are still compatible with this simple “tri-bimaximal” mixing Ansatz.

The hypothesis (1.1) has stimulated model building and the search for family sym-

metries which might lead to U = UHPS in a natural way. While it is not difficult to

simultaneously obtain Ue3 = 0 and maximal atmospheric-neutrino mixing [3], generating

a solar mixing angle θ12 = arcsin
(

1
/√

3
)

is highly non-trivial and in general necessi-

tates complicated models. In those models one often finds several scalar multiplets of the

horizontal-symmetry group with vacuum expectation values (VEVs) aligned in a special

way. To explain this peculiar alignment of VEVs one may have recourse to special scalar

potentials, stabilized with the help of supersymmetry — see for instance [4–6] — or to

extra-dimensional models [7].

In two previous papers [8, 9] we have enforced trimaximal mixing — which is a weaker

hypothesis than tri-bimaximal mixing — through a model. We now show that, with very

little extra effort, one can also achieve tri-bimaximal mixing along the same lines. In
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the model that we shall present here neither VEV alignment nor supersymmetry, non-

renormalizable terms, or extra dimensions are required for obtaining U = UHPS. Besides

enlarging the scalar sector of the Standard Model (SM) by several Higgs doublets and one

gauge singlet, our model uses the seesaw mechanism [10] with more than three right-handed

neutrino singlets, but in such a way that the additional right-handed neutrinos do not have

Yukawa couplings to the Higgs doublets; then these additional right-handed neutrinos —

in the present case there are two of them — can be exploited for imposing the desired

mixing properties.1 In our model lepton mixing originates solely in the Majorana mass

matrix MR of the right-handed neutrino singlets, and the number of independent Yukawa

coupling constants of the Higgs doublets is an absolute minimum — only two.

This paper is organized as follows. The model is presented in section 2. Variations on

the symmetries of the model, and their connection to the renormalization-group evolution

(RGE) of the light-neutrino mass matrix Mν , are investigated in section 3. The conclusions

are presented in section 4. An appendix contains details of the computation of the 3 × 3

matrix Mν out of the 5 × 5 matrix MR.

2 The model

2.1 Fields and symmetries

Our model is based on the SM gauge group SU(2) × U(1). The lepton sector2 consists

of three left-handed SU(2) doublets DαL = (ναL, αL)T (α = e, µ, τ), three right-handed

charged-lepton SU(2) singlets αR, and five right-handed SU(2) × U(1) singlet neutrinos

ναR, νℓR (ℓ = 1, 2). The scalar sector consists of one complex gauge singlet χ with zero

electric charge and four Higgs doublets φα =
(

φ+
α , φ

0
α

)T
, φ0 =

(

φ+
0 , φ

0
0

)T
.

The family symmetries of the model are the following:

• Three U(1) symmetries associated with the family lepton numbers Lα,

U(1)Lα
: DαL → eiψαDαL, αR → eiψααR, ναR → eiψαναR, ψα ∈ [0, 2π[ . (2.1)

The U(1)Lα
are supposed to be softly broken at high energy, i.e. at the seesaw scale [3,

11], by dimension-three terms of the types νTαLC
−1νβL, νTαLC

−1νℓL (C is the Dirac-

Pauli charge-conjugation matrix).

• The S3 permutation symmetry of the e, µ, τ indices. We view this permutation sym-

metry as being generated by two non-commuting transformations:

1This idea had already been previously used by us for tri-bimaximal mixing, but in that case we still

needed VEV alignment and made use of supersymmetry [5].
2We neglect the quark sector, which is immaterial for our purposes.

– 2 –



J
H
E
P
0
4
(
2
0
0
9
)
0
1
3

– The cyclic transformation

Ceµτ :















































DeL → DµL → DτL → DeL,

eR → µR → τR → eR,

νeR → νµR → ντR → νeR,

φe → φµ → φτ → φe,

ν1R → ων1R, ν2R → ω2ν2R,

χ→ ωχ, χ∗ → ω2χ∗,

(2.2)

where ω ≡ exp (2iπ/3) is the cubic root of unity with the properties ω2 = ω∗

and 1 + ω + ω2 = 0.

– The µ–τ interchange [3]

Iµτ :















































DµL ↔ DτL,

µR ↔ τR,

νµR ↔ ντR,

φµ ↔ φτ ,

ν1R ↔ ν2R,

χ↔ χ∗.

(2.3)

It is clear that the fields with α indices form triplet reducible representations of

S3, while
(

ν1R

ν2R

)

,

(

χ

χ∗

)

transform under S3 according to the complex version of the doublet irreducible rep-

resentation, previously used for instance in [12].3 The cyclic transformation Ceµτ is

softly broken by dimension-two and dimension-one terms in the scalar potential, but

it is preserved by all the dimension-three (and, of course, dimension-four) terms in

the Lagrangian. The symmetry Iµτ is not allowed to be softly broken. The VEV

vχ ≡ 〈χ〉0 breaks Ceµτ spontaneously, but it preserves Iµτ because it is real ; this

is a consequence of the Iµτ -invariance of the scalar potential, as will be shown in

subsection 2.3. At low energy, both Ceµτ and Iµτ are spontaneously broken because

all three vacuum expectation values (VEVs) vα ≡
〈

φ0
α

〉

0
are different (see below).

• Three Z2 symmetries [5, 13]

Z
(α)
2 : αR → −αR, φα → −φα, (2.4)

for α = e, µ, τ . The Z
(α)
2 are supposed to be softly broken at low energy, i.e. at the

electroweak scale, by dimension-two terms of the types φ†αφβ (α 6= β), φ†αφ0. The

symmetry Z
(α)
2 is spontaneously broken when φ0

α acquires the non-zero VEV vα.

3If one wishes one may separate χ into its real and imaginary parts, which transform under S3 according

to the real version of the doublet irreducible representation.
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2.2 Lagrangian and lepton mixing

The Yukawa Lagrangian has dimension four and therefore respects all the symmetries of

the model. It is given by

LYukawa = −y1

∑

α=e,µ,τ

D̄αLαRφα (2.5a)

−y2

∑

α=e,µ,τ

D̄αLναR (iτ2φ
∗
0) (2.5b)

+
y3

2

(

χνT1RC
−1ν1R + χ∗ νT2RC

−1ν2R

)

+ H.c. (2.5c)

The symmetries Z
(α)
2 are instrumental in ensuring that only the doublet φα couples to αR

— line (2.5a) — and that only the doublet φ0 couples to the three ναR — line (2.5b). The

family-lepton-number symmetries U(1)Lα
are also important to enforce Yukawa couplings

diagonal in flavour space [3]. Note that the number of Yukawa coupling constants of the

Higgs doublets is an absolute minimum — just y1 and y2.

Upon spontaneous symmetry breaking (SSB) the charged leptons acquire masses mα =

|y1vα|. Since those three masses are supposed to be all different, the scalar potential must

be rich enough that the VEVs vα turn out to be all different. Also upon SSB the neutrinos

acquire, from line (2.5b), Dirac mass terms

−
(

ν̄eR ν̄µR ν̄τR ν̄1R ν̄2R

)

MD









νeL

νµL

ντL









+ H.c., (2.6)

where

MD =



















a 0 0

0 a 0

0 0 a

0 0 0

0 0 0



















, a ≡ y∗2v0, v0 ≡
〈

φ0
0

〉

0
. (2.7)

In the Lagrangian there are also bare neutrino Majorana mass terms. These terms

have dimension three and are, therefore, allowed to break the family lepton numbers, but

not the permutation symmetry S3. They are

LMajorana =
M∗

0

2

∑

α=e,µ,τ

νTαRC
−1ναR (2.8a)

+M∗
1

(

νTeRC
−1νµR + νTµRC

−1ντR + νTτRC
−1νeR

)

(2.8b)

+M∗
2

[

νT1RC
−1
(

νeR + ωνµR + ω2ντR
)

+νT2RC
−1
(

νeR + ω2νµR + ωντR
)]

(2.8c)

+M∗
4 ν

T
1RC

−1ν2R + H.c. (2.8d)
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Together with line (2.5c) upon SSB, LMajorana generates the neutrino Majorana mass terms

− 1

2

(

ν̄eR ν̄µR ν̄τR ν̄1R ν̄2R

)

MRC



















ν̄TeR

ν̄TµR

ν̄TτR

ν̄T1R

ν̄T2R



















+ H.c., (2.9)

where the symmetric matrix MR is

MR =



















M0 M1 M1 M2 M2

M1 M0 M1 ω2M2 ωM2

M1 M1 M0 ωM2 ω2M2

M2 ω
2M2 ωM2 MN M4

M2 ωM2 ω2M2 M4 M ′
N



















, MN ≡ y∗3v
∗
χ, M ′

N ≡ y∗3vχ. (2.10)

We now derive the effective light-neutrino Majorana mass terms

Lν =
1

2

(

νTeL ν
T
µL νTτL

)

C−1Mν









νeL

νµL

ντL









+ H.c., (2.11)

where

Mν = −MT
DM

−1
R MD (2.12)

according to the seesaw formula [10]. Because of the special form of MD in equation (2.7),

only the 3×3 upper-left submatrix of M−1
R matters. One finds (for details see appendix A)

Mν =









x+ y + t z + ω2y + ωt z + ωy + ω2t

z + ω2y + ωt x+ ωy + ω2t z + y + t

z + ωy + ω2t z + y + t x+ ω2y + ωt









. (2.13)

Equations (A.7), (A.8) with M2 = M3 tell us that

(y, t) ∝
(

M ′
N ,MN

)

. (2.14)

Therefore, y/t = vχ/v
∗
χ. We now make the crucial assumption that the VEV vχ is real.

This is not an unjustified assumption since it simply corresponds to the conservation of

the symmetry Iµτ by the VEV of χ. It follows from this assumption that t = y, hence

Mν =









x+ 2y z − y z − y

z − y x− y z + 2y

z − y z + 2y x− y









. (2.15)
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This is precisely the Mν corresponding to tri-bimaximal mixing. Its diagonalization reads

UTHPSMνUHPS = diag (µ1, µ2, µ3) , (2.16a)

µ1 = x+ 3y − z, (2.16b)

µ2 = x+ 2z, (2.16c)

µ3 = x− 3y − z. (2.16d)

The light-neutrino masses are given by mj = |µj | (j = 1, 2, 3). The matrix Mν has five

parameters, corresponding to the three neutrino masses and the two Majorana phases,

which are completely free.

2.3 Scalar potential

We have demonstrated that our model leads, under the sole assumption that the VEV vχ
is real, to HPS mixing. In order to check that a real vχ is viable, we proceed to analyze the

scalar potential V of the φm (m = 0, e, µ, τ) and χ. The potential must respect both the

three symmetries Z
(α)
2 and the permutation symmetry S3, except for the dimension-two

and dimension-one terms, which are allowed to break softly both the Z
(α)
2 and Ceµτ , but

not Iµτ . Therefore,

V = λ1

[

(

φ†eφe

)2
+
(

φ†µφµ

)2
+
(

φ†τφτ

)2
]

+ λ2

(

φ†0φ0

)2
(2.17a)

+λ3

(

φ†eφe φ
†
µφµ + φ†µφµ φ

†
τφτ + φ†τφτ φ

†
eφe

)

(2.17b)

+λ4 φ
†
0φ0

(

φ†eφe + φ†µφµ + φ†τφτ

)

(2.17c)

+λ5

(

φ†eφµ φ
†
µφe + φ†µφτ φ

†
τφµ + φ†τφe φ

†
eφτ

)

(2.17d)

+λ6 φ
†
0

(

φeφ
†
e + φµφ

†
µ + φτφ

†
τ

)

φ0 (2.17e)

+λ7

[

(

φ†eφµ

)2
+
(

φ†µφτ

)2
+
(

φ†τφe

)2
+ H.c.

]

(2.17f)

+

{

λ8

[

(

φ†0φe

)2
+
(

φ†0φµ

)2
+
(

φ†0φτ

)2
]

+ H.c.

}

(2.17g)

+
[

λ9

(

φ†eφe + φ†µφµ + φ†τφτ

)

+ λ10φ
†
0φ0

]

|χ|2 (2.17h)

+λ11 |χ|4 + ϑ1

(

χ3 + χ∗3
)

+ µ1 |χ|2 + µ2

(

χ2 + χ∗2
)

+ η (χ+ χ∗) (2.17i)

+λ12

[

χ2
(

φ†eφe + ω2φ†µφµ + ωφ†τφτ

)

+ χ∗2
(

φ†eφe + ωφ†µφµ + ω2φ†τφτ

)]

(2.17j)

+ϑ2

[

χ
(

φ†eφe + ωφ†µφµ + ω2φ†τφτ

)

+ χ∗
(

φ†eφe + ω2φ†µφµ + ωφ†τφτ

)]

(2.17k)

+
(

φ†0 φ
†
e φ

†
µ φ

†
τ

)















µ3 µ9 µ8 µ8

µ∗9 µ4 µ7 µ7

µ∗8 µ
∗
7 µ5 µ6

µ∗8 µ
∗
7 µ6 µ5





























φ0

φe

φµ

φτ















. (2.17l)
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The only parameters in V which may be complex are λ8 and µ7,8,9. Notice the terms µ2

and η in line (2.17i), which break Ceµτ softly, and various terms in line (2.17l) which break

the Z
(α)
2 (and Ceµτ ) softly. All these terms, though, preserve Iµτ . The soft breaking of

the Z
(α)
2 in line (2.17l) is needed in order to prevent the appearance of Goldstone bosons if

λ7 = λ8 = 0 (see later).

We want both vχ and the mass of χ to be at the high (seesaw) scale, while both the vm
and the masses of the φm components should be at the low (electroweak) scale. Therefore

we must fine-tune λ12 and ϑ2 in lines (2.17j) and (2.17k), respectively, to be extremely

small, lest they pull the masses of the φα components up to the seesaw scale.4 Once λ12

and ϑ2 have been tuned to be very small, the phase of vχ becomes determined only by

the terms in line (2.17i). It is clear that, if µ2 is chosen negative and the product ϑ1η is

chosen positive, then the minimum of V will be obtained for a real vχ, with sign opposite

to the one of ϑ1 and η [9]. We have thus shown that there is a range of parameters of

the scalar potential for which the symmetry Iµτ is preserved by the seesaw-scale vacuum,

i.e. for which vχ is real.

At low scale Iµτ is spontaneously broken by |vµ| 6= |vτ |. Writing

(|vµ| , |vτ |) ∝ (sin θ, cos θ) ,

and assuming all VEVs and coupling constants to be real, we verify that the vacuum

potential is, as a function of θ, of the form

a+ b sin2 2θ + c sin 2θ + d
√

1 + sin 2θ,

where c ∝ µ6 and d stems from the µ7,8 terms. Is it clear that a vacuum potential of this

form in general leads to a non-trivial value of θ, which may moreover be very small if both

c and d are chosen much smaller than b > 0.

3 Variations on the symmetries and renormalization-group invariance

The group structure of the model: all the symmetries of the model, and their re-

spective breaking mechanisms, have been listed in section 2.1, and in principle it is not

necessary to detail the group that they generate. Still, elucidating the group structure of

the model may be useful for understanding the terms allowed in the Lagrangian. Following

for instance the reasoning in [14], the symmetry group G of our model may be described

as the semidirect product

G = (N ×H) ⋊ S3, (3.1)

where

N = Z
(e)
2 × Z

(µ)
2 × Z

(τ)
2 is generated by the Z2 symmetries of equation (2.4),

H = U(1)Le
× U(1)Lµ

× U(1)Lτ
is generated by the family lepton-number symmetries of

equation (2.1) and

4This fine-tuning is a weak point of our model, but most (non-supersymmetric) models with a very high

scale suffer from the same drawback.

– 7 –
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the permutation group S3 is generated by the cyclic permutation Ceµτ of equation (2.2)

and the transposition Iµτ of equation (2.3).

The semi-direct product is non-trivial since neither the Z
(α)
2 nor the U(1)Lα

commute with

Ceµτ and Iµτ . The elements of G can be written as triples (n, h, s), where n ∈ N , h ∈ H

and s ∈ S3. The multiplication law of G is the usual one for semidirect products:

(n1, h1, s1) (n2, h2, s2) =
(

n1s1n2s
−1
1 , h1s1h2s

−1
1 , s1s2

)

. (3.2)

In terms of 3 × 3 matrices, n is represented by a diagonal sign matrix, h is represented

by a diagonal phase matrix and s is a matrix in the defining triplet representation of S3.

According to section 2.1, the representations of G that we employ in our model are

1 for φ0,

ns for (φe, φµ, φτ ) ,

nhs for (eR, µR, τR) ,

hs for (DeL,DµL,DτL) and (νeR, νµR, ντR) ,

D2(s) for (ν1R, ν2R) and (χ, χ∗) ,

(3.3)

where the two-dimensional irreducible represention (irrep) of S3 is denoted D2(s). It is

easy to convince oneself that all the multiplets in the list (3.3) constitute irreps of G.

The group G contains all the family symmetries of the dimension-four terms of the

Lagrangian. As discussed in detail in section 2, there is a sequence of soft-breaking steps

which can be described as

G
dim 3−→ N ⋊ S3

dim2−→ Z
(µτ)
2 , (3.4)

where Z
(µτ)
2 is the Z2 group generated by Iµτ .

The variations on the symmetries in the following paragraphs will only concern the

normal subgroup H of G.

The symmetry group ∆(6∞2): if we remove from the three U(1)Lα
the global U(1)L

associated with the total lepton number L = Le + Lµ + Lτ , then the normal subgroup H

of G reduces to the set of matrices

U (β, γ) = diag
(

eiβ, eiγ , e−iβ−iγ
)

, β, γ ∈ [0, 2π[ . (3.5)

In this case, H ⋊ S3 is the group ∆(6∞2), or rather a faithful irrep thereof — see [15] for

a study of this group. Therefore, G = N ⋊ ∆(6∞2).

Switching to ∆(54): ∆(54) is the group ∆(6r2) with r = 3 — for details see [15–17].5

In this variant of our model we do not use the symmetries U(1)Lα
. Instead, we define the

matrix [8]

T ≡ diag
(

1, ω, ω2
)

, (3.6)

and use a symmetry under which the multiplets transform according to table 1. The trans-

5The latter paper uses ∆(54) for the construction of a lepton flavour model which is, however, totally

different from ours.
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DαL αR ναR φα

T T T ∗ T T 2

Table 1. Transformation of the multiplets under the symmetry T . The multiplets not shown in

the table transform trivially.

formation T , together with the 3× 3 permutation matrices, generates a three-dimensional

irrep of ∆(54). Notice that this group is a priori smaller — hence less powerful — than

∆(6∞2), but we enhance its power by allowing it to act non-trivially on the φα. It is easy to

check that the Yukawa Lagrangian of equation (2.5) is invariant under T , but we still need

the symmetries Z
(α)
2 to remove from LYukawa possible non-flavour-diagonal terms [8]. So the

symmetry group of our model is now G = N ⋊ ∆(54), which is finite and has 8× 54 = 432

elements. We may still describe G through equation (3.1), with H replaced by

H =
{

diag
(

ωp, ωq, ω−p−q
)

| p, q = 0, 1, 2
}

. (3.7)

Concerning the irreps, instead of list (3.3) we now have

1 for φ0,

nh2s for (φe, φµ, φτ ) ,

nh∗s for (eR, µR, τR) ,

hs for (DeL,DµL,DτL) and (νeR, νµR, ντR) ,

D2(s) for (ν1R, ν2R) and (χ, χ∗) .

(3.8)

The breaking of T is assumed to be soft, through dimension-three and dimension-two terms.

An important difference relative to section 2 is that T removes some of the dimension-four

terms from the scalar potential, because it acts non-trivially on the φα; one obtains a

restricted version of equation (2.17), viz.

λ7 = λ8 = 0. (3.9)

Notice that, although we did not use the ULα
in building this variant of the model, even-

tually the ULα
turn out to be (so-called accidental) symmetries of all the dimension-four

terms in the Lagrangian.

Switching to ∆(6r
2) with r ≥ 4: if the T of the previous paragraph is replaced by

T = diag (1, σ, σ∗) , σ ≡ exp (2iπ/r), r ≥ 4, (3.10)

then

H =
{

diag
(

σp, σq, σ−p−q
)

| p, q = 0, . . . , r − 1
}

(3.11)

and H⋊S3 is isomorphic to ∆(6r2) with r ≥ 4. All the previous remarks, including table 1,

still hold in this case, but there is a noteworthy exception: now we do not need to impose

the symmetries Z
(α)
2 , which become just accidental symmetries of all the terms in the

Lagrangian with dimension larger than two. Eventually, the family symmetry group of the

model is again of the form of equation (3.1), with G ∼= N ⋊ ∆(6r2) having 48r2 elements.
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Renormalization-group evolution of Mν: we proceed to the study of the RGE of

Mν from the seesaw scale down to the electroweak scale. We first note that the two real

degrees of freedom of the scalar gauge singlet χ are assumed to be heavy. Therefore, the

renormalization-group (RG) equations relevant for the determination of Mν at the low

scale are simply those of a multi-Higgs-doublet SM. Those equations were derived in [18].

It was shown in [9] that the form of the Yukawa couplings of the charged-lepton fields —

see line (2.5a) — remains unchanged; only the value of y1 evolves with the energy scale.

In the same paper [9], the importance of the quartic scalar couplings for the RGE of Mν

was investigated; the following sufficient conditions for RG invariance of Mν were found:

i) The Higgs doublet φ0, whose VEV v0 is responsible for generating Mν at the seesaw

scale, has no Yukawa couplings to the αR. In our model, the Yukawa couplings of

the charged leptons are given by line (2.5a) at any energy scale.

ii) There is a symmetry, holding at the seesaw scale, which forbids dimension-five neu-

trino mass operators involving two different Higgs doublets. In our model, that

symmetry is constituted by the three Z
(α)
2 .

iii) At the seesaw scale there is a symmetry forbidding quartic couplings of the type
(

φ†kφk′
)2

(k 6= k′) in the scalar potential. In our model, this is satisfied if some

symmetry like T leads to the condition (3.9).

Thus, applying the results of our previous paper [9] to the present model, we find that, if

equation (3.9) holds, then tri-bimaximal mixing holds at all energy scales in between the

seesaw and electroweak scales. According to the preceding discussion, this is possible by

using any of the symmetry groups ∆(6r2) (r ≥ 3). On the other hand, using ∆(6∞2)

allows both λ7 and λ8 to be non-vanishing, and then corrections to tri-bimaximal mixing

from the RGE of Mν are expected. Still, it is well known that such corrections can only

be sizable for a quasi-degenerate neutrino mass spectrum [19], an observation corroborated

by explicit studies of multi-Higgs doublet models [18] and general considerations [20].

S3 versus S4: in a series of papers [21] it has been argued that the only finite group

capable of yielding tri-bimaximal mixing is S4, or else a larger group containing S4. We

want to make some comments on that claim. Since S4 ≡ ∆(24) [16], we can expect that a

construction of our model in analogy to the usage of ∆(6r2) with r ≥ 3 is possible. This

is indeed the case. We can place the DαL, the αR and the ναR in triplets of S4. Putting

the φα in the reducible triplet representation of the subgroup S3 and adding to this scheme

the symmetries Z
(α)
2 in order to avoid non-flavour-diagonal couplings in LYukawa, we can

proceed with the construction of the model just as in section 2. Actually, it is easy to

see that this way of constructing the model amounts simply to the replacement of the

U(1)Lα
by discrete lepton numbers: fermions with flavour α are multiplied by −1 instead

of being multiplied by an arbitrary phase factor. In the language of equation (3.1), in this

case the family symmetry group is G = (N × N) ⋊ S3 — for a complete discussion of

its irreps see [14]. However, it appears to us that S4 is not an adequate symmetry group

for our model for two reasons. First, the full symmetry group, which is only effective in
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terms of dimension four in the Lagrangian, is much larger than S4 because its subgroup S3

does not commute with the Z
(α)
2 ; therefore, S4 misses an essential part of the symmetry

structure of our model. Second, in the terms of dimension three, i.e. in LMajorana, which

are crucial for our model, the symmetry group is only S3, something that we had already

advocated in [5]. In summary, in our model there is no compelling connection between S4

and tri-bimaximal mixing.

4 Conclusions

In this paper we have proposed a model for tri-bimaximal mixing based on an extension

of the SM with seesaw mechanism and family symmetries. The scalar sector consists of

four Higgs doublets and one complex gauge singlet, while the fermion sector has, besides

the SM multiplets, five right-handed neutrino singlets. The mixing matrix obtained at the

seesaw scale is exactly tri-bimaximal. The most straightforward version of the model uses

as family symmetries the permutation group S3 together with three Z2 symmetries and

family lepton numbers; the latter are softly broken at the seesaw scale. A slightly more

complicated way to obtain the model makes use of a group ∆(6r2) with r ≥ 3. The most

intricate part of the model is the stepwise soft symmetry breaking, which we have tried to

explain carefully in section 2. Whether one uses S3 together with family lepton numbers

or a group ∆(6r2) does not make any difference, except for two terms of dimension four in

the scalar potential. With ∆(6r2) those two terms are forbidden and, as a consequence, in

the one-loop renormalization-group evolution of the neutrino mass matrix from the seesaw

scale down to the electroweak scale, that matrix retains its form and tri-bimaximal mixing

remains exact at the electroweak scale. With S3 together with family lepton numbers there

are the usual RGE corrections, which are quite small, however, whenever the neutrino mass

spectrum is sufficiently non-degenerate.

The main purpose of the model presented here is to show that in enforcing tri-

bimaximal mixing one does not necessarily require VEV alignment, supersymmetry, non-

renormalizable terms, or extra dimensions. As a further bonus, one can also obtain RG

stability of HPS mixing.

Finally, we want to stress that in our model there is decoupling of the mixing problem

from the mass problem; the latter remains unsolved, since all lepton masses are com-

pletely free.
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A Inverting MR

The 5 × 5 symmetric matrix

M =



















M0 M1 M1 M2 M3

M1 M0 M1 ω2M2 ωM3

M1 M1 M0 ωM2 ω2M3

M2 ω
2M2 ωM2 MN M4

M3 ωM3 ω2M3 M4 M ′
N



















, ω ≡ exp (2iπ/3) (A.1)

has non-zero determinant:

detM = (M0 + 2M1)
{

(M0 −M1)
2MNM

′
N − [(M0 −M1)M4 − 3M2M3]

2
}

. (A.2)

Let us write

M−1 =

(

P R

RT Q

)

, (A.3)

where R is a 3 × 2 matrix and Q is a 2 × 2 symmetric matrix. Then,

P =









x+ y + t z + ω2y + ωt z + ωy + ω2t

z + ω2y + ωt x+ ωy + ω2t z + y + t

z + ωy + ω2t z + y + t x+ ω2y + ωt









, (A.4)

with

x =

(

M2
0 −M2

1

) (

MNM
′
N −M2

4

)

+ (4M0 + 2M1)M2M3M4 − 3M2
2M

2
3

detM
, (A.5)

z =

(

M2
1 −M0M1

) (

MNM
′
N −M2

4

)

+ (M0 − 4M1)M2M3M4 − 3M2
2M

2
3

detM
, (A.6)

y =
(M0 + 2M1)M

2
2M

′
N

detM
, (A.7)

t =
(M0 + 2M1)M

2
3MN

detM
. (A.8)
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